Cho phương trình z 3 + a z 2 + b z + c = 0 Nếu z=1-i và z=1 là 2 nghiệm của phương trình thì a - b - c bằng
A. 2
B. 3
C. 5
D. 6
Cho các mệnh đề sau:
1) d : 2 x + y - z - 3 = 0 x + y + z - 1 = 0 phương trình tham số có dạng: x = 2 t y = 2 - 3 t z = t - 1
2) d : x + y - 1 = 0 4 y + z + 1 = 0 có phương trình chính tắc là d : x - 1 1 = y z = z + 1 4
3) Phương trình chính tắc của đường thẳng (d) đi qua điểm A(2,0,-3) và vuông góc với mặt phẳng P : 2 x - 3 y + 5 z - 4 = 0 là d : x - 2 2 = y - 3 = z + 3 5
Hỏi bao nhiêu mệnh đề đúng.
A.1
B. 3
C. 2
D. 0
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.
Phương trình: z + 3 − i 2 − 6 z + 3 − i + 13 = 0 có 2 nghiệm phân biệt. Khẳng định nào sau đây là đúng?
A. Trong 2 nghiệm có một nghiệm bằng 0
B. Cả 2 nghiệm đều là số thực
C. Cả 2 nghiệm đều là số thuần ảo
D. Trong 2 nghiệm có 1 nghiệm là số thực, 1 nghiệm là số thuần ảo
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t
Cho A là giao điểm của đường thẳng d : x - 1 2 = y + 2 - 3 = z - 5 4 và mặt phẳng P : 2 x + 2 y - z + 1 = 0 . Phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua A là
A. x - 1 2 + y - 1 2 + z + 3 2 = 21
B. x - 1 2 + y - 2 2 + z + 3 2 = 25
C. x + 1 2 + y + 2 2 + z + 3 2 = 21
D. x + 1 2 + y + 2 2 + z + 3 2 = 25
Cho số phức z = a + bi thỏa mãn z + 2 + i - z 1 + i = 0 và z > 1 . Tính P = a + b.
A. P = -1
B. P = -5
C. P = 3
D. P = 7