1. Tâm I là trung điểm của AB
2. Nếu tọa độ $A(x_1,y_1,z_1)$ và tọa độ $B(x_2,y_2,z_2)$ thì tọa độ $I$ là:
$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$
3.
Bán kính $R=IA=IB=\frac{AB}{2}$
1. Tâm I là trung điểm của AB
2. Nếu tọa độ $A(x_1,y_1,z_1)$ và tọa độ $B(x_2,y_2,z_2)$ thì tọa độ $I$ là:
$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$
3.
Bán kính $R=IA=IB=\frac{AB}{2}$
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3;-2), bán kính 3.
a. Viết phương trình của đường tròn đó.
b. Viết phương trình ảnh của đường tròn (I;3) qua phép tịnh tiến theo vectơ v=(-2 ;1).
c. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng trục Ox.
d. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng qua gốc tọa độ
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(1;-3), bán kính 2. Viết phương trình ảnh của đường tròn (I;2) qua phép đồng dạng có đưuọc từ việc thực hiện liên tiếp phép vị tự tâm O tỉ số 3 và phép đối xứng qua trục Ox.
Trong mặt phẳng Oxy cho điểm I(1;1) và đường tròn tâm I bán kính 2. Viết phương trình đường tròn là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc 45 o và phép vị tự tâm O, tỉ số căn 2 .
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình 2x + y − 4 = 0.
a) Hãy viết phương trình của đường thẳng d 1 là ảnh của d qua phép vị tự tâm O tỉ số k = 3
b) Hãy viết phương trình của đường thẳng d 2 là ảnh của d qua phép vị tự tâm I(1;2) tỉ số k = -2
Cho mặt cầu (S) tâm O, bán kính bằng 2 và mặt phẳng (P). Khoảng cách từ O đến (P) bằng 4. Từ điểm M thay đổi trên (P) kẻ các tiếp tuyến MA, MB, MC tới (S) với A, B, C là các tiếp điểm. Biết mặt phẳng (ABC) luôn đi qua một điểm I cố định. Tính độ dài đoạn OI.
A. 3
B. 3 2
C. 1 2
D. 1
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(0;−1) , bán kính R = 2. Ảnh của (C) qua việc thực hiện liên tiếp phép quay tâm O góc quay 180 ° và phép vị tự tâm O tỉ số 2
A. ( x − 2 ) 2 + y 2 = 16
B. x 2 + y − 2 2 = 4
C. ( x − 2 ) 2 + y 2 = 4
D. x 2 + y − 2 2 = 16
Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng ∆ : x+2y-6=0. Viết phương trình đường thẳng ∆ ' là ảnh của đường thẳng ∆ qua phép quay tâm O góc 90 ∘ .
A. 2x-y+6=0
B. 2x-y-6=0
C. 2x+y+6=0
D. 2x+y-6=0
Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d có phương trình x+y-2=0, tìm phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I(1;2).
A. x+y+4=0
B. x+y-4=0
C. x-y+4=0
D. x-y-4=0
Cho hình cầu đường kính 2 a 3 . Mặt phẳng (P) cắt hình cầu theo thiết diện là hình tròn có bán kính bằng a 2 . Tính khoảng cách từ tâm hình cầu đến mặt phẳng (P)
A. a
B. a 2
C. a 10
D. a 10 2
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(1;−1) , bán kính R = 3. Ảnh của (C) qua việc thực hiện liên tiếp phép quay tâm O góc quay 1800và phép tịnh tiến theo vectơ u → = 2 ; − 3
A. x + 1 2 + y + 2 2 = 9
B. x − 1 2 + y + 2 2 = 9
C. x + 1 2 + y + 2 2 = 36
D. x − 1 2 + y + 2 2 = 36