1) Tìm nguyên hàm: \(\int\dfrac{dx}{\left(x-1\right)^3\sqrt{x^2+3x+1}}\)
2) Tính tích phân sau: \(\int_0^1\left\{\dfrac{1}{x}\right\}\left(\dfrac{x}{1-x}\right)dx\) (kí hiệu \(\left\{a\right\}\) là phần lẻ của số thực \(a\))
1) cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\) có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0
2) cho hàm số \(f\left(x\right)=\dfrac{3-3x+x^2}{x-1}\) giải bất phương trình f'(x) = 0
\(\)
Cho hàm số \(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{^3\sqrt{ax+1}-\sqrt{1-bx}}{x}\left(1\right)\\3a-5b-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)khix\ne0\)
(2) \(khix=0\)
Tìm điều kiện của tham số a và b để hàm số trên liên tục tại điểm x=0
xét tính liên tục của hàm số sau tại x = 2
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2-\sqrt{2x^2-4}}{2-x}\\1\end{matrix}\right.\) khi \(x\ne2\); khi \(x=2\)
1. đạo hàm của hàm số f(x) = 2x - 5 tại \(x_0=4\)
2. đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
3. đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
1) đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
2) đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
1) đạo hàm của hàm số \(\dfrac{2x^2+1}{x^2}\) là
2) cho hàm số \(f\left(x\right)=\sqrt{-5x^2+14x-9}\) tập hợp các giá trị của x để f'(x) = 0 là
xét tính liên tục của hàm số sau tại \(x_0\) = 5
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{2x-9}-1}{5-x}\\3\end{matrix}\right.\) khi \(x\ne5\); khi \(x=5\)
cho hàm số f(x)=\(x^2-4x+3\)
tìm gtri tham số m để \(\left|f\left(\left|x\right|\right)-1\right|=m\) có 8 nghiệm phân biệt
đáp án:
A. \(m< 1\)
B.\(0\le x\le2\)
C.1<x<2
D.0<x<1