Đặt \(2x^2-x-2=t\)
Ta có:
\(A=\left(t+3\right)\left(t-3\right)+8\)
\(A=t^2-9+8\)
\(A=\left(t-1\right)\left(t+1\right)\)
Thay vào ta được:
\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)
Đặt \(2x^2-x-2=t\)
Ta có:
\(A=\left(t+3\right)\left(t-3\right)+8\)
\(A=t^2-9+8\)
\(A=\left(t-1\right)\left(t+1\right)\)
Thay vào ta được:
\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)
phân tích đa thức thành nhân tử :
a, \( \left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
Phân tích đa thức thành nhân tử :\(\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8\)
Phân tích các đa thức sau thành nhân tử:
\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)
Phân tích đa thức sau thành phần tử:
\(a,2x^2-14x\\ b,\left(x^2-2x+1\right):\left(x-1\right)12+5x=8\)
Phân tích đa thức thành nhân tử:
\(x^3-8+2x\left(x-2\right)\)
Phân tích đa thức thành nhân tử: \(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
Phân tích đa thức thành nhân tử
\(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
Phân tích đa thức thành nhân tử:
a) \(x^2\left(1-x^2\right)-4-4x^2\)
b) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)