1: \(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
2: \(=4x^4+1+4x^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
1: =(x2+3x)(x2+3x+2)+1=(x2+3x)(x2+3x+2)+1
=(x2+3x)2+2(x2+3x)+1=(x2+3x)2+2(x2+3x)+1
=(x2+3x+1)2=(x2+3x+1)2
2: =4x4+1+4x2−4x2=4x4+1+4x2−4x2
=(2x2+1)2−(2x)2=(2x2+1)2−(2x)2
=(2x2−2x+1)(2x2+2x+1)