Phân tích các đa thức thành nhân tử
a) \(x^3\) + \(9x^2\) + 23x + 15
b) (\(x^2\) + 3x + 1) (\(x^2\) + 3x - 3) - 5
c) \(\left(3x-2\right)^2\) (6x - 5) (6x - 3) - 5
d) \(x^4\) + \(6x^3\) + \(11x^2\) + 6x + 1
e) \(x^4\) + \(5x^2\) + 9
f) \(x^4\) + \(2010x^2\) + 2009x + 2010
g) \(\left(x+2009\right)^3\) + \(\left(x-2010\right)^2\) - 1
1)
$x^3+9x^2+23x+15=(x^3+x^2)+(8x^2+8x)+(15x+15)$
$=x^2(x+1)+8x(x+1)+15(x+1)$
$=(x+1)(x^2+8x+15)$
$=(x+1)[(x^2+3x)+(5x+15)]$
$=(x+1)[x(x+3)+5(x+3)]=(x+1)(x+3)(x+5)$
5)
$x^4+5x^2+9=(x^4+6x^2+9)-x^2$
$=(x^2+3)^2-x^2=(x^2+3-x)(x^2+3+x)$
2)
$(x^2+3x+1)(x^2+3x-3)-5$
$=(a+1)(a-3)-5$ (đặt $x^2+3x=a$)
$=a^2-2a-8$
$=a^2+2a-(4a+8)=a(a+2)-4(a+2)=(a-4)(a+2)$
$=(x^2+3x-4)(x^2+3x+2)$
$=(x^2-x+4x-4)(x^2+x+2x+2)$
$=[x(x-1)+4(x-1)][x(x+1)+2(x+1)]=(x+4)(x-1)(x+2)(x+1)$
3)
$(3x-2)^2(6x-5)(6x-3)-5$
$=(9x^2-12x+4)(36x^2-48x+15)-5$
$=(9x^2-12x+4)[4(9x^2-12x)+15]-5$
$=(a+4)(4a+15)-5$ (đặt $9x^2-12x=a$)
$=4a^2+31a+55$
$=4a^2+20a+11a+55$
$=4a(a+5)+11(a+5)=(4a+11)(a+5)=(36x^2-48x+11)(9x^2-12x+5)$
$=
4)
$x^4+6x^3+11x^2+6x+1$
$=(x^4+6x^3+9x^2)+2x^2+6x+1$
$=(x^2+3x)^2+2(x^2+3x)+1$
$=(x^2+3x+1)^2$
6)
$x^4+2010x^2+2009x+2010$
$=(x^4-x)+2010x^2+2010x+2010$
$=x(x^3-1)+2010(x^2+x+1)$
$=x(x-1)(x^2+x+1)+2010(x^2+x+1)$
$=(x^2+x+1)(x^2-x+2010)$
7) Biểu thức không phân tích được thành nhân tử.