`P \in Z <=> (2\sqrtx-1) vdots (\sqrtx+1)`
`<=> [(2\sqrtx+1)-2] vdots (\sqrtx+1)`
`<=> (\sqrtx+1) \in {-2;2;-1;1}`
`<=> \sqrtx \in {-3;1;-2;0}`
`<=> x \in {1;0}`
.
ĐK: `x>=0`.
`P=(2\sqrtx-1)/(\sqrtx+1)=2-2/(\sqrtx+1)`
`x>=0`
`<=> \sqrtx>=0`
`<=> \sqrtx+1>=1`
`<=>2/(\sqrtx+1) <= 2`
`<=> -2/(\sqrtx+1) >= -2`
`<=> 2 - 2/(\sqrtx+1) >= 0`
`<=> P >=0`
Dấu "`=`" xảy ra `<=> x=0`
`P_(min)=0 <=> x=0`.