Phương trình hoành độ giao điểm:
\(x^2=2\left(m-1\right)x+m^2+2m\Leftrightarrow x^2-2\left(m-1\right)x-m^2-2m=0\) (1)
\(\Delta'=\left(m-1\right)^2+m^2+2m=2m^2+1>0;\forall m\)
\(\Rightarrow\) (1) có 2 nghiệm pb với mọi m hay (P) luôn cắt (d) tại 2 điểm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2-2m\end{matrix}\right.\)
\(x_1^2+x_2^2+6x_1x_2>2016\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+4x_1x_2>2016\)
\(\Leftrightarrow\left(2m-2\right)^2+4\left(-m^2-2m\right)>2016\)
\(\Leftrightarrow-16m>2012\)
\(\Rightarrow m< -\dfrac{503}{4}\)