1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Cho parabol (P) y=-x^2 và đường thẳng (d) y=mx-1
a) Với mọi giá trị của m, đường thẳng (d) luôn cắt Parabol (P) tại 2 điểm phân biệt A và B
b) Gọi Xa, Xb lần lượt là hoành độ giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để X^2aXb + x^2bXa-XaXb=3
BT: cho hàm số :y= \(\frac{1}{2}x^2\)(P)
a, Tìm giá trị của m để đường thẳng (d) : y = (m-4)x+m+1 cắt đồ thì hàm số trên tại điểm aA có hoành độ bằng 2. Rồi tìm tọa độ thứ 2 khác A.
b,Cmr với mọi giá trị của m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
c, Gọi y1;y2 là tung độ giao điểm của đồ thị (d) và (P). Tìm m để y1+y2 đạt GTNN
B1: cho hàm số \(\frac{1}{2}x^2\)(P)
a, Tìm giá trị của m để đường thẳng (d) : y = (m-4)x+m+1 cắt đồ thì hàm số trên tại điểm aA có hoành độ bằng 2. Rồi tìm tọa độ thứ 2 khác A.
b,Cmr với mọi giá trị của m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
c, Gọi y1;y2 là tung độ giao điểm của đồ thị (d) và (P). Tìm m để y1+y2 đạt GTNN
bài 1: cho hàm số y=x2 có đồ thị là parabol (P) và hàm số y=2mx-2m+1 có đồ thị là đường thẳng (d)
1. tìm m để P tiếp xúc d, tìm tọa độ tiếp điểm
2. Tìm m sao cho P cắt d tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1=3x2
Bài 2: cho hàm số y=x2 có đồ thị là parabol (P) và hàm số y=2(m+1)x-m+4 có đồ thị là đường thẳng (d)
1.CM rằng P luôn cắt d tại 2 điểm phân biệt
2. Gọi giao của P và d là A và B thứ tự có hoành độ là x1,x2, tìm m để x1,x2 thỏa mãn x12+x22=22
2) Trong mặt phẳng tọa độ Oxy, cho Parabol (P) : y = x ^ 2 và đường thẳng (d) : y = mx + 4 a) Chứng minh với mọi giá trị của m, (d) luôn cắt (P) tại hai điểm phân biệt có hoành độ Xị. Xạ b) Tìm tất cả các giá trị của m d dot c / (x_{1} ^ 2) + mm*x_{2} = 6m - 5
Cho đường thẳng (d):y= (m-1)x+m^2+1 và parabol (P): y=x^2a)
Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung.
b) Gọi x1, x2 là hoành độ giao điểm của (d) và (P). Tìm các giá trị của tham số m để
\(|x_1|+|x_2|=2\sqrt{2}\)
Bài 5. (1 điểm) Cho parabol (P): y = −𝑥 ^2 và đường thẳng (d): y = mx − 1.
1. Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B.
2. Gọi 𝑥1 , 𝑥2 là hai hoành độ của A, B. Tìm m sao cho 𝑥1 ^3 + 𝑥2^ 3 = − 4.
Cho parabol ( P ) : y = x2 và đường thẳng ( d ) : y = ( 2 -m )x + m2 + 1 .
a/ Vẽ parabol ( P ) .
b/ Chứng minh rằng parabol ( P ) và đường thẳng ( d ) luôn cắt nhau tại hai điểm phân biệt A và B .
c/ Gọi xA , xB lần lượt là hoành độ của điểm A , điểm B . Tìm m để x2A + x2B = 5 .
HELP ME !!!!!!!!
Cho Parabol (P): y=−x2 và đường thẳng (d): y=2mx+m2−3.Với m là tham số
a)Chứng Minh:Đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m?
b) Gọi x1và x1 lần lượt là hoành độ giao điểm của đường thẳng (d) với (P). Tính B=|x1−x2|