Ta có: \(x=\dfrac{\sqrt{n}-1}{2}\)
Để x nguyên thì:
\(\sqrt{n}-1\) ⋮ 2
\(\Rightarrow\sqrt{n}-1\in B\left(2\right)\)
Mà: \(B\left(2\right)=\left\{0;2;4;6;...\right\}\)
\(\Rightarrow\sqrt{n}-1\in\left\{0;2;4;6;...\right\}\)
\(\Rightarrow\sqrt{n}\in\left\{1;3;5;7;9;...\right\}\)
\(\Rightarrow n\in\left\{1;9;25;49;81;...\right\}\)
Mà: \(n< 45\)
\(\Rightarrow n\in\left\{1;9;25\right\}\)
Để x là số nguyên thì \(\sqrt{n}-1⋮2\)
=>\(\sqrt{n}-1=2k\left(k\in Z\right)\)
=>\(\sqrt{n}=2k+1\left(k\in Z\right)\)
=>\(n=\left(2k+1\right)^2\)
mà n<45
nên \(n\in\left\{1;9;25\right\}\)