Lời giải:
\(\int \frac{x-1}{\sqrt{x^2-2x+5}}dx=\frac{1}{2}\int \frac{2x-2}{\sqrt{x^2-2x+5}}dx=\frac{1}{2}\int \frac{d(x^2-2x+5)}{\sqrt{x^2-2x+5}}\\
=\frac{1}{2}\int (x^2-2x+5)^{\frac{-1}{2}}d(x^2-2x+5)\\
=\frac{1}{2}.\frac{(x^2-2x+5)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+C=\sqrt{x^2-2x+5}+C\)