Đáp án C
Đặt u = x d v = sin x d x ⇒ d u = d x v = cos x ⇒ F x = ∫ x sin x d x = − x cos x + ∫ cos x d x = − x cos x + sin x + C
Đáp án C
Đặt u = x d v = sin x d x ⇒ d u = d x v = cos x ⇒ F x = ∫ x sin x d x = − x cos x + ∫ cos x d x = − x cos x + sin x + C
Tìm họ nguyên hàm của hàm số lượng giác sau :
\(f\left(x\right)=\int\frac{4\sin x+3\cos x}{\sin x+2\cos x}dx\)
Tìm GTLN và GTNN của hàm số y = 2 sin x + cos x + 3 2 cos x - sin x + 4 là:
A. m i n y = - 3 2 - 1 , m a x y = 3 2 + 1
B. m i n y = - 3 2 - 1 , m a x y = 3 2 - 1
C. m i n y = - 3 2 , m a x y = 3 2 - 1
D. m i n y = - 3 2 - 2 , m a x y = 3 2 - 1
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
A. m = - 1 2 ; M = 1
B. m = 1 ; M = 2
C. m = - 2 ; M = 1
D. m = - ; M = 2
Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = sin x + cos x 2 sin x - cos x + 3 lần lượt là:
A. m = - 1 ; M = 1 2
B. m = -1; M = 2
C. m = - 1 2 ; M = 1
D. m = 1; M = 2
Tìm đạo hàm y' của hàm số y = sin x + cos x
A. y' = 2cosx
B. y' = 2sinx
C. y' = sinx - cosx
D. y' = cosx - sinx
Tập giá trị của hàm số y = cos x + 2 sin x + 3 2 cos x - sin x + 4 có bao nhiêu giá trị nguyên?
A. 1
B. 2
C. 3
D. Vô số
Tìm GTLN và GTNN của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 3 (*)
A. m a x y = 4 7 , m i n y = - 4 7
B. m a x y = 2 7 7 , m i n y = - 2 7 7
C. m a x y = 7 2 , m i n y = - 2 7
D. m a x y = 2 7 7 , m i n y = - 2 7 7
Nguyên hàm của hàm số f ( x ) = sin x . 2 − cos x là
A. F ( x ) = 2 3 ( 2 − cos x ) 2 − cos x + C
B. F ( x ) = − 3 2 ( 2 − cos x ) 2 − cos x + C
C. F ( x ) = − 1 2 2 − cos x + C
D. F ( x ) = 2 3 2 − cos x + C
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Tìm nguyên hàm của hàm số f ( x ) = ( sin x + c o s x ) 2
A. ∫ f ( x ) d x = x + 1 2 c o s 2 x + C
B. ∫ f ( x ) d x = 1 2 c o s 2 x + C
C. ∫ f ( x ) d x = - 1 2 c o s 2 x + C
D. ∫ f ( x ) d x = x - 1 2 c o s 2 x + C