Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tập nghiệm bất phương trình: l o g 0 , 5 ( x − 4 ) + 1 ≥ 0 là:
A. 4 ; 9 2
B. ( − ∞ ; 6 )
C. ( 4 ; + ∞ )
D. ( 4 ; 6 ]
Tìm tập nghiệm của bất phương trình log 2 5 ( x - 4 ) + 1 > 0 .
A. [ 13 2 ; + ∞ )
B. - ∞ ; 13 2
C. 4 ; + ∞
D. 4 ; 13 2
Nghiệm của bất phương trình 2 x + 2 - x - 3 < 0 là
A. log 2 3 - 5 2 < x < log 2 3 + 5 2
B. x < log 2 3 - 5 2 , x > log 2 3 + 5 2
A. log 2 3 - 5 2 < x < log 2 3 + 5 2
D. x < log 2 4 - 5 2 , x > log 2 4 + 5 2
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Cho bất phương trình m .3 x + 1 + 3 m + 2 4 − 7 x + 4 + 7 x > 0 , với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ − ∞ ; 0 .
A. m > 2 + 2 3 3 .
B. m > 2 − 2 3 3 .
C. m ≥ 2 − 2 3 3 .
D. m ≥ − 2 − 2 3 3 .
Cho hàm số y = f (x) liên tục trên R có đồ thị như hình vẽ.
Biết trên ( - ∞ ; - 3 ) ∪ ( 2 ; + ∞ ) t h ì f ' ( x ) > 0 . Số nghiệm nguyên thuộc (-10; 10) của bất phương trình [ f ( x ) + x - 1 ] ( x 2 - x - 6 ) > 0 là
A. 9
B. 10
C. 8
D. 7
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. - 1 ; + ∞
D. 1 ; + ∞
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là:
A. (1;2)
B. (-1;2)
C. − 1 ; + ∞ .
D. 1 ; + ∞ .