ta đi chứng minh \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
thật vậy, \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Đẳng thức xảy ra <=> (x-y)^2=0 <=>x-y=0 <=>x=y
áp dụng bất đẳng thức trên ta có \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.1=2\)
Đẳng thức xảy ra <=> x=y và x^2+y^2=1 <=> x=y=1/ căn 2
Áp dụng bất đẳng thức Bu-nhi-a-cop-xki cho 2 bộ số (x;y) và (1;1) ta được:
\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x.1+y.1\right)^2\)\(\Leftrightarrow2\ge\left(x+y\right)^2\)
Dấu "=" xảy ra khi x=y=\(\frac{1}{\sqrt{2}}\)
Vậy \(\left(x+y\right)^2\) đạt giá trị lớn nhất là 2 khi \(x=y=\frac{1}{\sqrt{2}}\)