Cho đường tròn (O ; R) từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B, C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh: tam giác ABC cân và OA là đường trung trực của đoạn BC. b) Chứng minh OH x OA = R²
Cho đường tròn (O;R) và 1 điểm A cách O 1 khoảng 2R. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm)
a) Cm: OA là đường trung trực của BC
b) Gọi H là giao điểm của OA và BC. Cm: HA.HO=HB.HC
c)Cm: tam giác ABC đều. Tính cạnh AB theo R
d) OA cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác
Giúp mình giải câu d nhé !!!!!!!!!!!!!
Bài 1. Từ điểm
A
ở ngoài đường tròn
(O R; )
, vẽ hai tiếp tuyến
AB AC ,
đến
(O R; )
với
BC,
là các tiếp
điểm. Tia
AO
cắt dây
BC
tại
H .
a)Chứng minh:
OA
là đường trung trực của đoạn thẳng BC và
2 AB AH AO =
.
b)Vẽ đường kính
BD
của
(O R; )
. Gọi
M
là trung điểm của
CD
. Chứng minh
OMCH
là hình
chữ nhật.
Cho (O;R) , lấy A ngoài (O) sao cho OA=2R. Từ A kẻ 2 tiếp tuyến AB và AC với (O)
a, Cmr AO là đường trung trực của BC . Tính AB theo R
b, Gọi I là trung điểm của OB, K là trung điểm của OA với (O) . Tính diện tích tam giác OIK
c, Đường thẳng AI cắt cung lớn BC tại M, Tiếp tuyến tại M của (O) cắt đường thẳng AB, AC tại P và Q. Cmr : MP=p-AQ (P là nửa chu vi của tam giác APQ)
Từ điểm A ở ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn(B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh: OA là đường trung trực của BC; AB2=AH.AO.
b) Kẻ đường kính BD. Gọi E là giao điểm của đoạn thẳng AD với (O), E không trùng với D. Chứng minh: CD//OA; AE.AD=AH.AO và DE.AB=BE.BD.
c)Tính góc HEC.
Bài 1: Cho (O;R) và điểm A nằm ngoài (O) sao cho OA=3R. Từ A vẽ 2 tiếp tuyến AB; AC với (O)
a) CMR: Tứ giác OBAC nội tiếp
b) CMR: OA ⊥ BC
c) Từ B vẽ đường thẳng // AC cắt (O) tại D; AD cắt (O) tại E. Tính AD.AE theo R
d) Tia BE cắt AC tại F. CMR: F là trung điểm AC
Bài 2: Cho ΔABC nhọn nội tiếp (O); hai điểm B;C cố định. Điểm A di chuyển trên cung lớn BC. Gọi H là hình chiếu của A xuống BC. Gọi M;N lần lượt là hình chiếu của B;C đến đường kính AD
a) C/m các điểm A;B;H;M cùng thuộc một đường tròn
b) C/m ΔHMN ∽ ΔABC
c) Gọi I;E lần lượt là trung điểm BC và AB. C/m IE là trung trực của HM
Cho (O) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Vẽ OA cắt BC tại D.
a) Cm OA là trung trực của BC.
b) Cm OD × DA = BD².
c) Vẽ đường kính BE, AE cắt (O) tại F. Gọi G là trung điểm EF, đường thẳng OG cắt đường thẳng BC tại H. Cm OD × DA = OG × OH.
d) Cm EH là tiếp tuyến (O).
Cho đường tròn (O) và điểm A nằm ngoài (O). Kẻ các tiếp tuyến AB, AC với (O) trong đó B,C là các tiếp điểm
a, Chứng minh đường thẳng OA là trung trực của BC
b, Gọi H là giao điểm của AO và BC. Biết OB = 2cm và OH = 1 cm, tính:
i, Chu vi và diện tích tam giác ABC
ii, Diện tích tứ giác ABOC
Từ điểm A ở ngoài đường tròn (O,R) vẽ hai tiếp tuyến AB và AC đến (O,R), với B và C là các tiếp điểm. Tia AO cắt dây BC tại H.
a) Chứng minh OA là trung trực của đoạn thẳng BC và AB2 = AH . AO
b) Vẽ đường kính BD của (O,R). Gọi M là trung điểm CD. Tiếp tuyến tại D của (O) cắt BC tại E. Chứng minh ∆DME ~ ∆BOE.
c) Tia EM cắt BD tại K, tia EO cắt CD tại I. Chứng minh IK ⊥ OD.