\(N=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2014.2016}\)
\(=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2014.2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\)
\(=2\left(\dfrac{1008}{2016}-\dfrac{1}{2016}\right)\)
\(=2.\dfrac{1007}{2016}=\dfrac{1007}{1008}\)
Công thức đây bạn:
\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
Giải:
\(N=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2014.2016}\)
\(N=2.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2014.2016}\right)\)
\(N=2.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)
\(N=2.\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\)
\(N=2.\dfrac{1007}{2016}\)
\(N=\dfrac{1007}{1008}\)
Công thức tính: \(\dfrac{1}{n.\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Chúc bạn học tốt!