n3+4.n2+9 chia hết n+4
=n3.n2+9.4
=n5+36 chia hết cho 4
=36 đã chia hết cho 4
Vậy n là 1 số khi nhân 5 phải chia hết cho 4
n3+4.n2+9 chia hết n+4
=n3.n2+9.4
=n5+36 chia hết cho 4
=36 đã chia hết cho 4
Vậy n là 1 số khi nhân 5 phải chia hết cho 4
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
Chứng minh rằng: A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n
Tìm n thuộc N* để:
a) n+10 chia hết cho 2n + 1
b) n+19 chia hết cho 9-n
c) n2 + 23 chia hết cho n-2
d) n+4 chia hết cho n2 -1
e) 12n + 5 chia hết cho 8n-1
I.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3) m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
LÀM NHANH GIÚP tớ nhá ^_^ Tớ tick
Chứng minh rằng: A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Nguồn bài viết: https://timgiasuhanoi.com/dang-bai-tap-chung-minh-quan-he-chia-het-so-hoc-6/
Tìm số tự nhiên n , sao cho :
a) n+4 chia hết cho n+1
b) n2+4chia hết cho n+2
c) 13n chia hết cho n-1
Bài 4: Tìm số tự nhiên n sao cho:
a) 4n - 5 chia hết cho 2n - 1
b) n2 + 3n + 1 chia hết cho n +1
Tìm n ∈ N
a, 3n + 2 chia hết cho n - 3
b, n2 + 7n + 9 chia hết cho n + 7
Tìm n ∈ N
a, 3n + 2 chia hết cho n - 3
b, n2 + 7n + 9 chia hết cho n + 7
1. Cho n thuộc N, CMR n2+n+1 ko chia hết cho 4 và ko chia hết cho 5.