Gọi \(d=\text{ƯCLN}\left(n+1;2n+3\right)\) \((d\in\mathbb{N}^*)\)
Khi đó: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2\left(n+1\right)⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(d\in\mathbb{N}^*\) nên \(d=1\Rightarrow\text{ƯCLN}\left(n+1;2n+3\right)=1\)
hay \(\dfrac{n+1}{2n+3}\) là phân số tối giản
$\text{#}Toru$
Gọi d=ƯCLN(n+1;2n+3)
=>\(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(2n+2-2n-3⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(n+1;2n+3)=1
=>\(\dfrac{n+1}{2n+3}\) là phân số tối giản