Cho hình nón đỉnh S có đường sinh bằng 2R và thiết diện qua trục của hình nón là tam giác SAB có góc ASB bằng 60 o . Tính thể tích và diện tích xung quanh của khối nón.
A. V = πR 3 3 , S xq = πR 2
B. V = πR 3 3 3 , S xq = 2 πR 2
C. V = πR 3 6 , S xq = πR 2 2
D. V = πR 3 3 , S xq = 2 πR 2
Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của khối nón đỉnh S đáy là hình tròn tâm O' bằng bao nhiêu, biết rằng thể tích của nó bằng 1 8 thể tích khối nón đỉnh S, đáy là hình tròn tâm O.
A. h = 5
B. h = 10
C. h = 20
D. h= 40
Cho một hình nón đỉnh S có chiều cao bằng 8cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có đường sinh bằng 4cm. Tính thể tích của khối nón (N).
A. 768 125 π cm 3
B. 786 125 π cm 3
C. 2304 125 π cm 3
D. 2358 125 π cm 3
Một hình nón đỉnh S có chiều cao SO=h. Gọi AB là dây cung của đường tròn (O) sao cho tam giác OAB đều và góc giữa (SAB) và mặt phẳng đáy bằng 60 ° . Tính thể tích V của khối nón sinh bởi hình nón đã cho
A. V = 8 πh 3 27
B. V = 4 πh 3 9
C. V = 4 πh 3 3
D. V = 4 πh 3 27
Cho hình nón có thể tích bằng 12 π và diện tích xung quanh bằng 15. Tính bán kính đáy của hình nón biết bán kính là số nguyên dương.
A. 4
B. 3.
C. 6
D. 5
Cho khối nón cụt có R, r lần lượt là bán kính hai đáy và h = 3 là chiều cao. Biết thể tích khối nón cụt là V = π tìm giá trị lớn nhất của biểu thức P = R + 2r.
A. 2 3
B. 3
C. 3 3
D. 2
Cho khối nón (N) đỉnh S, chiều cao là a 3 và độ dài đường sinh là 3a. Mặt phẳng (P) đi qua đỉnh S, cắt và tạo với mặt đáy của khối nón một góc 60 0 . Tính diện tích thiết diện tạo bởi mặt phẳng (P) và khối nón (N)
A. 2 a 2 5
B. a 2 3
C. 2 a 2 3
D. a 2 5
Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của hình nón đỉnh S đáy là hình tròn tâm O' là. (biết thể tích của nó bằng 1/8 thể tích khối nón đỉnh S, đáy là hình tròn tâm O).
A. h=5
B. h=10
C. h=20
D. h=40
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón (N).
A. 27 3 π
B. 18 3 π
C. 9 3 π
D. 36 3 π