Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ nguyễn Thái

Một hình trụ có bán kính r và chiều cao h = r√3.

a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.

b) TÍnh thể tích khối trụ tạo nên bởi hình trụ đã cho.

c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng 300. TÍnh khoảng cách giữa đường thẳng AB và trục của hình trụ

 

Võ Đông Anh Tuấn
1 tháng 4 2016 lúc 16:52

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2 

Stp = 2πrh + 2πr2 =  2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2  ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1Ovà AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có  là trung điểm của  = IJ.

Theo giả thiết  = 300.

do vậy: AB1 = BB1.tan 300 =  = r.

Xét tam giác vuông 

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có:  =  -   .

Vậy khoảng cách giữa AB và O1O2 :  


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Võ nguyễn Thái
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết