Gọi O là tâm hình vuông của mặt đáy. Khi đó O cũng là tâm của mặt cầu. Ta có:
R 2 = S O 2 = a 2 - a 2 2 2 = a 2 2 S = 4 πR 2 = 2 πa 2
Đáp án C
Gọi O là tâm hình vuông của mặt đáy. Khi đó O cũng là tâm của mặt cầu. Ta có:
R 2 = S O 2 = a 2 - a 2 2 2 = a 2 2 S = 4 πR 2 = 2 πa 2
Đáp án C
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, các mặt bên tạo với đáy một góc 60 ∘ . Tính diện tích S của mặt cầu ngoại tiếp hình chóp.
A. S = 25 π a 2 3
B. S = 32 π a 2 3
C. S = 8 π a 2 3
D. S = a 2 12
Cho hình chóp tam giác đều có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60 ° . Tính diện tích S của mặt cầu ngoại tiếp hình chóp đã cho.
A. S = 16 πa 2 9
B. S = 64 πa 2 9
C. S = 16 πa 2 3
D. S = 64 πa 2 3
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, các mặt bên tạo với đáy một góc 60 độ. Tính diện tích S của mặt cầu ngoại tiếp hình chóp.
A. S = a 2 12
B. S = 25 π a 2 3
C. . S = 32 π a 2 3
D. S = 8 π a 2 3
Tính diện tích mặt cầu ngoại tiếp một hình chóp tứ giác đều có cạnh bên bằng 2 và cạnh đáy bằng 1
A. 32 π 7
B. 8 π 7
C. 128 π 21 14
D. 16 π 14
Tính diện tích mặt cầu ngoại tiếp một hình chóp tứ giác đều có cạnh bên bằng 2 và cạnh đáy bằng 1.
A. 32 π 7
B. 8 π 7
C. 128 π 21 14
D. 16 π 14
Tính diện tích mặt cầu ngoại tiếp một hình chóp tứ giác đều có cạnh bên bằng 2 và cạnh đáy bằng 1.
A. 32 π 7
B. 8 π 7
C. 128 π 21 14
D. 16 π 14
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 ° . Gọi (S ) là mặt cầu ngoại tiếp hình chóp S.ABC. Thể tích của khối cầu tạo nên bởi mặt cầu (S ) bằng
A. 32 π a 3 81
B. 64 π a 3 77
C. 32 π a 3 77
D. 72 π a 3 39
Cho hình chóp tứ giác đều có cạnh đáy bằng 3 2 và đường cao bằng 3 3 . Tính diện tích S của mặt cẩu ngoại tiếp hình chóp đó.
A. 48 π
B. 4 3 π
C. 12 π
D. 32 3 π
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, diện tích mỗi mặt bên bằng 2 a 3 . Thể tích khối nón có đỉnh S và đường tròn đáy ngoại tiếp hình vuông ABCD bằng
A. 7 4 π a 3
B. 3 7 4 π a 3
C. 7 6 π a 3
D. 7 3 π a 3