Cho hình lập phương ABCD.A′B′C′D′. Gọi O,O′ lần lượt là tâm của hai hình vuông ABCD và A′B′C′D′. Gọi V 1 là thể tích của khối trụ tròn xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A′B′C′D′, V 2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A′B′C′D′. Tỷ số thể tích V 1 V 2 là
A. 6
B. 2
C. 8
D. 4
Cho hình lập phương A B C D . A ' B ' C ' D ' . Gọi O, O’ lần lượt là tâm của hai hình vuông ABCD và A ' B ' C ' D ' . Gọi V 1 là thể tích của khối trụ xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A ' B ' C ' D ' , V 2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A ' B ' C ' D ' . Tỷ số thể tích V 1 V 2 là
A. 4
B. 8
C. 6
D. 2
Cho hình lập phương ABCD.A'B'C'D' có O và O' lần lượt là tâm của hình vuông ABCD và A'B'C'D'. Gọi V 1 là thể tích khối nón tròn xoay có đỉnh là trung điểm của OO' và đáy là đường tròn ngoại tiếp hình vuông A'B'C'D', V 2 là thể tích khối trụ tròn xoay có hai đáy là hai đường tròn nội tiếp hình vuông ABCD và A'B'C'D'. Tỉ số thể tích V 1 V 2 là
A. 1 2
B. 3 4
C. 1 4
D. 1 3
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một hình nón tròn xoay (N) có góc ở đỉnh bằng 60 ° . Tính tỉ số thể tích của hình trụ (N) và hình nón (T).
A. V T V N = 2 6
B. V T V N = 2 3
C. V T V N = 3 2
D. Đáp án khác
Một khối hình trụ có chiều cao bằng 3 lần đường kính của mặt đáy chứa đầy nước. Người ta đặt vào trong khối đó một khối cầu có đường kính bằng đường kính khối trụ và một khối nón có đỉnh tiếp xúc với khối cầu, đáy khối nón trùng với đáy trên của khối trụ (như hình vẽ).
Tính tỉ số thể tích của lượng nước còn lại trong khối trụ và lượng nước của khối trụ ban đầu.
A. 4 9
B. 5 9
C. 2 3
D. 1 2
Trong không gian Oxyz, cho hình nón có đỉnh I thuộc mặt phẳng P : 2 x - y - 2 z - 7 = 0 và hình tròn đáy nằm trên mặt phẳng R : 2 x - y - 2 z + 8 = 0 . Mặt phẳng (Q) đi qua điểm A 0 ; - 2 ; 0 và vuông góc với trục của hình nón chia hình nón thành hai phần có thể tích lần lượt là V 1 và V ( V 1 là thể tích của phần chứa đỉnh I ). Biết rằng biểu thức S = V 2 + 78 V 1 3 đạt giá trị nhỏ nhất khi V 1 = a , V 2 = b . Khi đó tổng a 2 + b 2 bằng
A. 2031 π 2
B. 377 3
C. 52 3 π 2
D. 2031
Một hình trụ có chiều cao h và bán kính đáy R. Hình nón có đỉnh là tâm đáy trên của hình trụ và đáy là hình tròn đáy dưới của hình trụ. Gọi V 1 là thể tích của hình trụ, V 2 là thể tích của hình nón. Tính tỉ số V 1 V 2
A. 2
B. 2 2
C. 3
D. 1 3
Một hình nón có thiết diện qua trục là một tam giác đều. Gọi V 1 , V 2 lần lượt là thể tích của khối cầu ngoại tiếp và thể tích khối cầu nột tiếp khối nón. Tính tỉ số t = V 1 V 2
A. t = 8
B. t = 6
C. t = 4
D. t = 2
Cho một hình nón có đỉnh S, tâm của đáy là O. Cắt hình nón bởi một mặt phẳng (P) đi qua trung điểm của SO và song song với mặt đáy, ta được một hình nón mới có đỉnh S và đáy là hình tròn thuộc (P). Gọi V 1 , V 2 lần lượt là thể tích khối nón ban đầu và thể tích khối nón mới. Phát biểu nào sau đây là đúng?
A. V 1 = 4 V 2 .
B. V 1 = 8 V 2 .
C. V 1 = 16 V 2 .
D. 3 V 1 = 8 V 2 .