Trên mặt phẳng Oxy ta xét một hình chữ nhật ABCD với các điểm A − 2 ; 0 , B − 2 ; 2 , C 4 ; 2 , D ( 4 ; 0 ) . Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên (tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M( x;y) mà x + y < 2
A. 3 7
B. 8 21
C. 1 3
D. 4 7
Trên mặt phẳng O x y ta xét một hình chữ nhật A B C D với các điểm A − 2 ; 0 , B − 2 ; 2 , C 4 ; 2 , D 4 ; 0 . Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên( tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M x ; y mà x + y < 2.
A. 3 7
B. 8 21
C. 1 3
D. 4 7
Một người đang đứng tại gốc O của trục toạ độ Oxy. Do say rượu nên người này bước ngẫu nhiên sang trái hoặc sang phải trên trục toạ độ với độ dài mỗi bước bằng 1 đơn vị. Xác suất để sau đúng 10 bước người này quay lại đúng gốc toạ độ O bằng
A. 15 128
B. 63 100
C. 63 256
D. 3 20
Trong khôn gian với hệ trục tọa độ O x y z , cho mặt cầu S : x 2 + ( y - 4 ) 2 + z 2 = 5 . Tìm tọa độ điểm A thuộc trục Oy, biết rằng ba mặt phẳng phân biệt qua A có các vec-tơ pháp tuyến lần lượt là các vec-tơ đơn vị của các trục tọa độ cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là 11 π
A. A ( 0 ; 2 ; 0 ) A ( 0 ; 6 ; 0 )
B. A ( 0 ; 0 ; 0 ) A ( 0 ; 8 ; 0 )
C. A ( 0 ; 0 ; 0 ) A ( 0 ; 6 ; 0 )
D. A ( 0 ; 2 ; 0 ) A ( 0 ; 8 ; 0 )
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-1;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D(0;-3;-1)
B. D(0;1;-1)
C. D(0;2;-1)
D. D(0;3;-1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-2;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương và cao độ âm sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D 0 ; − 3 ; − 1
B. D 0 ; 1 ; − 1
C. D 0 ; 2 ; − 1
D. D 0 ; 3 ; − 1
Trên hệ trục tọa độ Oxy, cho đường tròn C : x 2 + y 2 - 2 x + 6 y - 4 = 0 . Viết phương trình đường thẳng d đi qua điểm A(2;-1) và cắt đường tròn (C) theo một dây cung có độ dài lớn nhất?
A. 4x + y - 1 = 0
B. 2x - y - 5 = 0
C. 3x - 4y - 10 = 0
D. 4x + 3y - 5 = 0
Trong hệ tọa độ Oxy có 8 điểm nằm trên tia Ox và 5 điểm nằm trên tia Oy. Nối một điểm trên tia Ox và một điểm trên tia Oy ta được 40 đoạn thẳng. Hỏi 40 đoạn thẳng này cắt nhau tại bao nhiêu giao điểm nằm trong góc phần tư thứ nhất của hệ trục tọa độ xOy (Biết rằng không có bất kì 3 đoạn thẳng nào đồng quy tại 1 điểm).
A. 260
B. 290
C. 280
D. 270
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3