Là \(\tan35^0\cdot5,5+\dfrac{5,5}{\cos35^0}\approx10,57\left(m\right)=1057\left(cm\right)\left(C\right)\)
Là \(\tan35^0\cdot5,5+\dfrac{5,5}{\cos35^0}\approx10,57\left(m\right)=1057\left(cm\right)\left(C\right)\)
một cây tre bị gẫy ngang thân, ngọn cây vừa chạm đất và tạo vơi mặt đất góc 30 độ biết khoảng cách từ vị trí ngọn tre chạm đất tới gốc cây là 4,5m. Tính chiều cao ban đầu của cây tre (Tính bằng cm)
Một cây tre cao 9 mét bị gãy ngang thân, ngọn cây tre chạm đất tạo với mặt đất
một góc 42 độ . Hỏi điểm gãy ngang của cột cách mặt đất bao nhiêu mét ?
Làm được mình like cho!!!
Một cây tre cao 9m bị gió bão làm gãy ngang thân cây, ngọn cây chạm đất cách gốc 3m. Hỏi điểm gãy cách gốc bao nhiêu? (làm tròn đến chữ số thập phân thứ hai).
A. 6m
B. 5m
C. 4m
D. 3m
Một cây tre cao 8m bị gió bão làm gãy ngang thân cây, ngọn cây chạm đất cách gốc 3,5m. Hỏi điểm gãy cách gốc bao nhiêu? (làm tròn đến chữ số thập phân thứ hai).
A. 3,32m
B. 3,23m
C. 4m
D. 3m
Một cây tre cao 3m bị gió bão làm gãy ngang thân, ngọn cây chạm đất cách gốc 3,5 m . Hỏi điểm gãy cách gốc bao nhiêu? (làm tròn đến chữ số thập phân thứ hai)
Một cây tre cao 9m bị gió bão làm gãy ngang thân, ngọn cây chạm đất cách gốc 3m . Hỏi điểm gãy cách gốc bao nhiêu?
A. 6m
B. 5m
C. 4m
D. 3m
Một cây tre cao 9m bị gió bão làm gãy ngang thân, ngọn cây chạm đất cách gốc 3m . Hỏi điểm gãy cách gốc bao nhiêu?
A. 6m
B. 5m
C. 4m
D. 3m
Một cây tre cao 8m bị gió bão làm gãy ngang thân cây, ngọn cây chạm đất cách gốc 3,5m. Hỏi điểm gãy cách gốc bao nhiêu? (làm tròn đến chữ số thập phân thứ hai).
trình bày chi tiết
Hai cây tre bị gãy cách gốc theo thứ tự 2 thước và 3 thước. Ngọn cây nọ chạm gốc cây kia. Tính từ chỗ thân 2 cây chạm nhau đến mặt đất.