Bài 2:
a. 3x(x - 6) - 2x2 = x2 + 6
<=> 3x2 - 18x - 2x2 - x2 - 6 = 0
<=> 3x2 - 2x2 - x2 - 18x - 6 = 0
<=> -18x - 6 = 0
<=> -18x = 6
<=> x = \(\dfrac{6}{-18}=\dfrac{-1}{3}\)
b. (x - 3)(x - 2) - 5 = x2 - 4x
<=> x2 - 2x - 3x + 6 - 5 - x2 + 4x = 0
<=> x2 - x2 - 2x - 3x + 4x + 6 - 5 = 0
<=> -x + 1 = 0
<=> -x = -1
<=> x = 1
c. (x + 5)2 - 8x = x2 + 15
<=> x2 + 10x + 25 - 8x - x2 - 15 = 0
<=> x2 - x2 + 10x - 8x + 25 - 15 = 0
<=> 2x + 10 = 0
<=> 2x = -10
<=> x = -5
d. x2 - 4x + 4 = 0
<=> x2 - 2.2.x + 22 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2
e. x2 + 8x + 16 = 0
<=> x2 + 2.x.4 + 42 = 0
<=> (x + 4)2 = 0
<=> x + 4 = 0
<=> x = -4
f. x2 - 36 = 0
<=> x2 - 62 = 0
<=> (x - 6)(x + 6) = 0
<=> \(\left[{}\begin{matrix}x-6-0\\x+6=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
g. (x + 3)2 - 16 = 0
<=> (x + 3)2 - 42 = 0
<=> (x + 3 + 4)(x + 3 - 4) = 0
<=> (x + 7)(x - 1) = 0
<=> \(\left[{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)
k: Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-2x^3+8\)
\(=x^3-8-2x^3+8\)
\(=-x^3\)
g: Ta có: \(\left(x-3\right)\left(x+3\right)-6x^2-x-10\)
\(=x^2-9-6x^2-x-10\)
\(=-5x^2-x-19\)
h: Ta có: \(\left(x+2\right)^3-2x^2\left(x-5\right)\)
\(=x^3+6x^2+12x+8-2x^3+10x^2\)
\(=-x^3+16x^2+12x+8\)