Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Mọi người giải bài này giúp e với ạ

Nguyễn Đức Trí
9 tháng 8 lúc 22:13

b) \(cosa=-\dfrac{3}{5}\left(\pi< a< \dfrac{3\pi}{2}\right)\)

\(sin^2a+cos^2a=1\Rightarrow sin^2a=1-cos^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)

\(\Rightarrow sina=-\dfrac{4}{5}\) vì \(\pi< a< \dfrac{3\pi}{2}\)

\(cos2a=cos^2a-sin^2a=\dfrac{9}{25}-\dfrac{16}{25}=-\dfrac{7}{25}\)

\(sin2a=2sinacosa=2.\left(-\dfrac{4}{5}\right).\left(-\dfrac{3}{5}\right)=\dfrac{24}{25}\)

\(cosa=2cos^2\dfrac{a}{2}-1=1-2sin^2\dfrac{a}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}sin^2\dfrac{a}{2}=\dfrac{1}{2}\left(1-cosa\right)=\dfrac{1}{2}\left(1+\dfrac{3}{5}\right)=\dfrac{4}{5}\\cos^2\dfrac{a}{2}=\dfrac{1}{2}\left(1+cosa\right)=\dfrac{1}{2}\left(1-\dfrac{3}{5}\right)=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sin\dfrac{a}{2}=-\dfrac{2}{\sqrt[]{5}}=-\dfrac{2\sqrt[]{5}}{5}\\cosa=\dfrac{1}{\sqrt[]{5}}=\dfrac{\sqrt[]{5}}{5}\end{matrix}\right.\) \(\left(\pi< a< \dfrac{3\pi}{2}\Rightarrow\dfrac{\pi}{2}< \dfrac{a}{2}< \dfrac{3\pi}{4}\right)\)

c.

\(cos\left(a+b\right)cos\left(a-b\right)=\dfrac{1}{2}\left[cos\left(a+b+a-b\right)+cos\left(a+b-a+b\right)\right]\)

\(=\dfrac{1}{2}\left(cos2a+cos2b\right)=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)\)

\(=cos^2a-sin^2b\)

\(=1-sin^2a-\left(1-cos^2b\right)=cos^2b-sin^2a\)

d.

\(sin4x.sin10x-sin11x.sin3x-sin7x.sinx\)

\(=\dfrac{1}{2}\left(cos6x-cos14x\right)-\dfrac{1}{2}\left(cos8x-cos14x\right)-\dfrac{1}{2}\left(cos6x-cos8x\right)\)

\(=\dfrac{1}{2}\left(cos6x-cos6x-cos14x+cos14x-cos8x+cos8x\right)\)

\(=\dfrac{1}{2}.0=0\)

e.

\(sinA+sinB+sinC=2sin\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{A-B}{2}\right)+2sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{C}{2}\right)\)

\(=2sin\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)cos\left(\dfrac{A-B}{2}\right)+2cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)cos\left(\dfrac{C}{2}\right)\)

\(=2cos\left(\dfrac{C}{2}\right)cos\left(\dfrac{A-B}{2}\right)+2cos\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{C}{2}\right)\)

\(=2cos\left(\dfrac{C}{2}\right)\left[cos\left(\dfrac{A-B}{2}\right)+cos\left(\dfrac{A+B}{2}\right)\right]\)

\(=4cos\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{B}{2}\right)\)

a.

\(sin\left(a+\dfrac{\pi}{6}\right)-cos\left(a-\dfrac{\pi}{3}\right)=sin\left(a+\dfrac{\pi}{6}\right)-cos\left[a-\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)\right]\)

\(=sin\left(a+\dfrac{\pi}{6}\right)-cos\left(a+\dfrac{\pi}{6}-\dfrac{\pi}{2}\right)\)

Áp dụng: \(cos\left(x-\dfrac{\pi}{2}\right)=sinx\)

\(=sin\left(a+\dfrac{\pi}{6}\right)-sin\left(a+\dfrac{\pi}{6}\right)=0\) (với mọi a luôn)

b.

\(\pi< a< \dfrac{3\pi}{2}\Rightarrow sina< 0\Rightarrow sina=-\sqrt{1-cos^2a}=-\dfrac{4}{5}\)

\(cos2a=2cos^2a-1=2.\left(-\dfrac{3}{5}\right)^2-1=-\dfrac{7}{25}\)

\(sin2a=2sina.cosa=2.\left(-\dfrac{4}{5}\right).\left(-\dfrac{3}{5}\right)=\dfrac{24}{25}\)

\(\pi< a< \dfrac{3\pi}{2}\Rightarrow\dfrac{\pi}{2}< \dfrac{a}{2}< \dfrac{3\pi}{4}< \pi\) \(\Rightarrow cos\left(\dfrac{a}{2}\right)< 0\)

\(cosa=2cos^2\left(\dfrac{a}{2}\right)-1\Rightarrow cos\left(\dfrac{a}{2}\right)=-\sqrt{\dfrac{1+cosa}{2}}=-\dfrac{\sqrt{5}}{5}\)

\(sina=2sin\left(\dfrac{a}{2}\right).cos\left(\dfrac{a}{2}\right)\Rightarrow sin\left(\dfrac{a}{2}\right)=\dfrac{sina}{2cos\left(\dfrac{a}{2}\right)}=\dfrac{2\sqrt{5}}{5}\)


Các câu hỏi tương tự
Trương Tố Nhung
Xem chi tiết
Nguyễn Vũ Quỳnh Như
Xem chi tiết
Gia Phong Dương Vũ
Xem chi tiết
Phạm Thị Ngọc Lan
Xem chi tiết
Phạm Thị Ngọc Lan
Xem chi tiết
Phạm Thị Ngọc Lan
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Đậu Linh
Xem chi tiết
Phạm Nhi
Xem chi tiết
Miu Bé
Xem chi tiết