Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Nghĩa

Mn giúp mik vs

Minhmetmoi
6 tháng 2 2022 lúc 10:33

Câu 3:

a.

Biến đổi biểu thức A ta được:

     \(A=\dfrac{x}{1-x}+\dfrac{5}{x}=\dfrac{x^2-5x+5}{x-x^2}\)

Ta có:

     \(A-\left(5+2\sqrt{5}\right)=\dfrac{\left[\left(12+4\sqrt{5}\right)x-10-2\sqrt{5}\right]^2}{24+8\sqrt{5}}\ge0\)

Do đó:

     \(A_{min}=5+2\sqrt{5}\) khi  \(x=\dfrac{5-\sqrt{5}}{4}\)

b.

Từ giả ta có các nhận xét sau

    \(\sqrt{2022}=\Sigma\sqrt{a^2+b^2}\ge\Sigma\dfrac{a+b}{\sqrt{2}}=\sqrt{2}\left(a+b+c\right)\)

     \(\Rightarrow a+b+c\le\sqrt{1011}\)

     \(\sqrt{2022}=\Sigma\sqrt{a^2+b^2}\le\sqrt{3\left[2\left(a^2+b^2+c^2\right)\right]}\)

     \(\Rightarrow a^2+b^2+c^2\ge337\)

Do vai trò của a, b, c bình đẳng nên ta có thể giả sử:

     \(a\le b\le c\)

     \(\Rightarrow\left\{{}\begin{matrix}a^2\le b^2\le c^2\\\dfrac{1}{b+c}\le\dfrac{1}{c+a}\le\dfrac{1}{a+b}\end{matrix}\right.\)

Áp dụng bđt Chebyshev cho hai bộ số cùng chiều 

\(\left(a^2,b^2,c^2\right)\) và \(\left(\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}\right)\) :

\(VT\ge\dfrac{1}{3}.\left(a^2+b^2+c^2\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge\dfrac{3\left(a^2+b^2+c^2\right)}{2\left(a+b+c\right)}\ge\dfrac{\sqrt{1011}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{1011}}{3}\)


Các câu hỏi tương tự
tu nguyen
Xem chi tiết
Yến 9/3
Xem chi tiết
eugicacandy
Xem chi tiết
Fan Sammy
Xem chi tiết
khánh thịnh
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết