\(\Leftrightarrow9x^2-24x+16-9x^2-6x-3x-2=5\)
=>-33x+14=5
=>-33x=-9
=>x=3/11
\(16-24x+9x^2-\left(6x+2+9x^2+3x\right)-5=0\\ 9x^2-24x+11-9x-9x^2-2=0\\ -33x+9=0\\ -33x=-9\\ x=\dfrac{3}{11}\)
`(4-3x)^{2}-(3x+1)(2+3x)=5`
`<=>4^{2}-2.4.3x+(3x)^{2}-(6x+2+9x^{2}+3x)=5`
`<=>16-24x+9x^{2}-(9x^{2}+9x+2)=5`
`<=>9x^{2}-9x^{2}-24x-9x+16-2=5`
`<=>-33x+14=5`
`<=>-33x=-9`
`<=>x=9/33=3/11`
Vậy `S={3/11}`
⇔9^x2−24x+16−9^x2−6x−3x−2=5
⇔9x^2−24x+16−9^x2−6x−3x−2=5
<=>-33x+14=5
<=>-33x=-9
=>x=3/11