Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luna

MN có thể giúp em câu 45 đc ko ạ ?

Đỗ Tuệ Lâm
31 tháng 1 2022 lúc 23:33

Do \(M\in d\) nên M(1+2t; 1-t ; t) 

MA+MB= \(\sqrt{4t^2+\left(t-1\right)^2+\left(t+1\right)^2}+\sqrt{\left(2t-1\right)^2+t^2+\left(t-1\right)^2}\)

\(=\sqrt{6t^2+2}+\sqrt{6t^2-6t+2}=\sqrt{6t^2+2+}\sqrt{6.\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}}\) 

Chọn \(\overset{r}{u}=\left(\sqrt{6t};\sqrt{2}\right);\overset{r}{v}=\left(\sqrt{6}.\left(\dfrac{1}{2}-t\right);\dfrac{1}{\sqrt{2}}\right)\)

\(\Rightarrow\overset{r}{u}+\overset{r}{v}=\left(\dfrac{\sqrt{6}}{2};\dfrac{3}{\sqrt{2}}\right)\) , Ta có :

MA+MB=\(\left|\overset{r}{u}\right|+\left|\overset{r}{v}\right|\ge\left|\overset{r}{u}+\overset{r}{v}\right|=\sqrt{\dfrac{6}{4}+\dfrac{9}{2}}=\sqrt{6}\)

Dấu đẳng thức xảy ra <=> \(\overset{r}{u};\overset{r}{v}\) cùng hướng

\(\Leftrightarrow\dfrac{\sqrt{6t}}{\sqrt{6}\left(\dfrac{1}{2}-t\right)}=\dfrac{\sqrt{2}}{\dfrac{1}{\sqrt{2}}}\Leftrightarrow1=1-2t\)

\(\Leftrightarrow t=\dfrac{1}{3}\) . Vậy MA+MB nhỏ nhất

\(\Leftrightarrow M\left(\dfrac{5}{3},\dfrac{2}{3};\dfrac{1}{3}\right)\)

Vậy chọn D 


Các câu hỏi tương tự
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết
Luna
Xem chi tiết