Chọn C
Miền nghiệm của hệ bất phương trình là miền tứ giác `ABOC` với `A(-6;-2)`, `B(-2;2)` và `C(0;-2)`
Chọn C
Miền nghiệm của hệ bất phương trình là miền tứ giác `ABOC` với `A(-6;-2)`, `B(-2;2)` và `C(0;-2)`
Miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x+y\le10\\-3\le x\le3\\-3\le y\le3\end{matrix}\right.\) là:
A. Một nửa mặt phẳng
B. Miền tam giác
C. Miền tứ giác
D. Miền ngũ giác
Gi ải các điểm A, B, C, D miền nghiệm của hệ bất phương trình \(\left[{}\begin{matrix}2x+3y-6< 0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\)
Biểu diễn miền nghiệm của hệ bất phương trình sau trên mặt phẳng tọa độ:
\(\left\{{}\begin{matrix}y-x< -1\\x>0\\y< 0\\\end{matrix}\right.\)
Gi á trị nhỏ nhất của biểu thức F( x;y ) = y - x thuộc miền nghiệm của hệ bất phương trình
\(\left\{{}\begin{matrix}y-2x\le2\\2y-x\ge4\\x+y\le5\end{matrix}\right.\) là
Trong các khẳng định sau, khẳng định nào đúng?
A. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình x + y ≤ 2.
B. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình
và (x; y) = (-1; 1) là một nghiệm của hệ.
C. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình và (x; y) = (-2; 1) là một nghiệm của hệ.
D. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình và (x; y) = (1; 0) là một nghiệm của hệ.
Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}2x+m< 0\\3x^2-x-4\le0\end{matrix}\right.\)vô nghiệm
Giải hệ phương trình
\(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
Bài 2 (1 điểm)
a) Biểu diễn miền nghiệm của hệ bpt $\left\{ \begin{aligned} & x\ge 0 \\ & 0\le y\le 4 \\ & x+y\le 7 \\ & x+3y\le 15 \\ \end{aligned} \right.$.
b) Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một sản phẩm loại I cần dùng $1$ máy nhóm A và $1$ máy nhóm B. Để sản xuất ra một sản phẩm loại $2$ cần dùng $1$ máy nhóm A, $3$ máy nhóm B và $2$ máy nhóm C. Nhà máy có $7$ máy nhóm A, $15$ máy nhóm B, $8$ máy nhóm C. Biết một sản phẩm loại I lãi $10$ nghìn đồng, một sản phẩm loại II lãi $15$ nghìn đồng. Hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi là cao nhất.
Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2-1\le0\\x-m>0\end{matrix}\right.\)có nghiệm