\(M=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}\) (1)
đặt \(A=1+2+2^2+2^3+...+2^{2012}\)
\(2A=2+2^2+2^3+2^4+...+2^{2013}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2013}\right)-\left(1+2+2^2+2^3+...+2^{2012}\right)\)
\(A=2^{2013}-1\) (2)
\(\left(1\right)\left(2\right)\Rightarrow M=\frac{2^{2013}-1}{2^{2014}-2}\)
\(=\frac{2^{2013}-1}{2^{2013}\cdot2-1\cdot2}\)
\(=\frac{2^{2013}-1}{2\left(2^{2013}-1\right)}\)
\(=\frac{1}{2}\)
Tách tử và mẫu ta có:
Đặt A = 1 + 2 + 22 + 23 + .......... + 22012
2A = 2 + 22 + 23 + 24 + ............ + 22013
2A - A = ( 2 + 22 + 23 + 24 + ............ + 22013 ) - ( 1 + 2 + 22 + 23 + ............. + 22012 )
A = 22013 - 1
\(\Rightarrow\)M = \(\frac{2^{2013}-1}{2^{2014}-2}\)
\(\Rightarrow M=\frac{1}{2}\)