Đáp án A
· Trong các kết quả trên, số nhỏ nhất là: 1 – 4ln2, số lớn nhất là: 0
· Vậy, m = min − 2 ; 0 y = 1 − 4 ln 2 khi x = –1 ; M = max − 2 ; 0 y = 0 khi x = 0
Suy ra M.m = 0
Đáp án A
· Trong các kết quả trên, số nhỏ nhất là: 1 – 4ln2, số lớn nhất là: 0
· Vậy, m = min − 2 ; 0 y = 1 − 4 ln 2 khi x = –1 ; M = max − 2 ; 0 y = 0 khi x = 0
Suy ra M.m = 0
Giá trị nhỏ nhất của hàm số f ( x ) = l n ( x 2 + x + 1 ) trên đoạn [-2;0] bằng
A. ln3.
B. 0.
C. -2 ln2.
D. ln3-2 ln2.
Giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = x = ln(x) trên đoạn 1 2 ; e lần lượt là
A. 1 và e - 1
B. 1 và e
C. 1 2 + ln 2 và e - 1
D. 1 và 1 2 + ln 2
Giá trị nhỏ nhất của hàm số y = l n ( x 2 - 2 x + 1 ) - x trên đoạn [2;4] là:
A. 2ln2 - 3
B. 2ln2 - 4
C. - 2
D. - 3
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = l n ( 2 x 2 + e 2 ) trên [0;e]. Mệnh đề nào sau đây đúng
A. M + m = 5
B. M + m = 4 + ln3
C. M + m = 4 + ln2
D. M + m = 2 + ln3
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Giá trị nhỏ nhất của hàm số y = ln x x trên đoạn [1;e] bằng:
A. 0
B. 1
C. - 1 e
D. e
Biết rằng m là một số dương để bất phương trình m x ≥ 2 x + 1 nghiệm đúng với ∀ x ∈ ℝ . Giá trị lớn nhất của hàm số y = x + ln m x - 1 , x ∈ 2 ; 4 thuộc đoạn nào dưới đây
A. [1;2]
B. [2,5;5]
C. [5;6]
D. [7;9]
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - x 3 + 2 x 2 - x + 2 trên đoạn - 1 ; 1 2 . Khi đó tích số M.m bằng
A. 45 4
B. 212 47
C. 125 36
D. 100 9
Tìm giá trị lớn nhất của hàm số f x = x 2 - ln x trên đoạn [2;3].
A. m a x 2 ; 3 f x = 4 - 2 ln 2
B. m a x 2 ; 3 f x = 3 - 2 ln 3
C. m a x 2 ; 3 f x = e
D. m a x 2 ; 3 f x = 3 - 2 ln 2