Cho biết : \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{ax^2+1}-bx-2}{x^3-3x+2}\left(a,b\in R\right)\) có kết quả là một số thực. Giá trị của biểu thức \(a^2+b^2\) ?
Tìm các số thưc a,b thỏa mãn \(\lim\limits_{x\rightarrow1}\left(\dfrac{2x^2+ax+b}{x^2-1}\right)=\dfrac{1}{4}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow1}\dfrac{x^2-1}{\sqrt{3x+1}-2}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^2-2x}{\sqrt{x+2}-2}\)
Tìm các số thực a, b thỏa mãn \(\lim\limits_{x\rightarrow1}\)\(\dfrac{2x^2+ax+b}{x^2+2x-3}=\dfrac{3}{4}\)
a) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+2}+\sqrt{5x+4}-5}{x-1}_{ }\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+4}+\sqrt{90-6x}-5}{x^2}\)
Cho em hỏi cách bấm CASIO giải trắc nghiệm với ạ
\(\lim\limits_{x\rightarrow1}\)\(\dfrac{x^2+2x-3}{2x^2-x-1}\)
\(\lim\limits_{x\rightarrow3^-}\dfrac{\left|1-3x\right|}{3-x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{3x-2}+x^3+3x^2-5}{x-1}\)
a) \(\lim\limits_{x\rightarrow1}\)\(^{\dfrac{^{3\sqrt{4x-1}-\sqrt{4x-3}}}{x-1}}\)