\(=\left(\dfrac{7}{9}\right)^2-\left[-\dfrac{8}{9}\cdot\left(-\dfrac{9}{4}\right)\right]^4\cdot\left(-\dfrac{8}{9}\right)\\ =\dfrac{49}{81}-\left[2^4\cdot\left(-\dfrac{8}{9}\right)\right]\\ =\dfrac{49}{81}-16\cdot\left(-\dfrac{8}{9}\right)=\dfrac{49}{81}+\dfrac{128}{9}=\dfrac{1201}{81}\)
\(\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2-\left(-\dfrac{8}{9}\right)^5\cdot\left(-\dfrac{9}{4}\right)^4\)
\(=\dfrac{49}{81}+\dfrac{8^5\cdot9^4}{9^5\cdot4^4}\)
\(=\dfrac{49}{81}+\dfrac{2^{15}}{9\cdot2^8}\)
\(=\dfrac{49}{81}+\dfrac{2^7}{9}\)
\(=\dfrac{49+9\cdot2^7}{81}\)
\(=\dfrac{1201}{81}\)