\(\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{9}-\dfrac{2023}{2024}\right)\)
\(=\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{2023}{2024}\)
\(=\dfrac{2023}{2024}\)
\(\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{9}-\dfrac{2023}{2024}\right)\)
\(=\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{2023}{2024}\)
\(=\dfrac{2023}{2024}\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(b,B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2022}\right)\left(1-\dfrac{1}{2023}\right)\)
help với mấy người đẹp trai xinh gái và đừng làm như anh Nguyễn Lê Phước Thịnh
\(\dfrac{2022}{2023}.\left(\dfrac{9}{13}-\dfrac{7}{11}\right)+\dfrac{2022}{2023}.\left(\dfrac{17}{13}-\dfrac{4}{17}\right)\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
Thực hiện phép tính: \(\left[\left(\dfrac{1}{3}\right)^{21}:\left(\dfrac{1}{3}\right)^3+2.\left(\dfrac{1}{9}\right)^9\right]:\left[\left(\dfrac{1}{3}\right)^6\right]^3\)
B=\(\left(\dfrac{2008}{2023}-\dfrac{2023}{2008}\right)\)-\(\left(\dfrac{-15}{2023}-\dfrac{15}{2023}\right)\)
\(\left(\dfrac{-2}{3}\right)^2.x=\left(\dfrac{-2}{3}\right)^5\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
\(\left(\dfrac{2}{3}x-1\right)\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)
\(\dfrac{4}{9}:x=3\dfrac{1}{3}:2,25\)
\(1\dfrac{1}{3}:0,8=\dfrac{2}{3}:0,1x\)
Cho đa thức R(x)=\(x^2+2x\). Tính giá trị của biểu thức
\(S=\dfrac{1}{R\left(3\right)}+\dfrac{1}{R\left(4\right)}+\dfrac{1}{R\left(5\right)}+...+\dfrac{1}{R\left(2023\right)}+\dfrac{1}{2.2023}\)
\(\dfrac{1}{3}-\dfrac{1}{3}:\left(-\dfrac{2}{3}\right)^2+\left(-3\right)^3.\left(7\dfrac{7}{9}-9\dfrac{2}{3}\right)\)