Vì \(\dfrac{2}{1}\ne\dfrac{1}{-2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=10m-2\\x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10m\\x-2y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2m\\2y=x-2=2m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2m\\y=m-1\end{matrix}\right.\)
\(x^2-2y^2=-2\)
=>\(\left(2m\right)^2-2\left(m-1\right)^2=-2\)
=>\(4m^2-2\left(m^2-2m+1\right)=-2\)
=>\(4m^2-2m^2+4m=0\)
=>\(2m^2+4m=0\)
=>\(m^2+2m=0\)
=>m(m+2)=0
=>\(\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)