\(\left(5+2\sqrt{6}\right)^2\)
\(=5^2+2\cdot5\cdot2\sqrt{6}+\left(2\sqrt{6}\right)^2\)
\(=25+20\sqrt{6}+24=49+20\sqrt{6}\)
\(\left(\sqrt{5}-2\right)^2=\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot2+2^2\)
\(=5-4\sqrt{5}+4=9-4\sqrt{5}\)
\(\left(1-\sqrt{3}\right)^2=1^2-2\cdot1\cdot\sqrt{3}+\left(\sqrt{3}\right)^2\)
\(=1-2\sqrt{3}+3=4-2\sqrt{3}\)
\(\left(\sqrt{3}-2\right)^2=\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot2+2^2\)
\(=3-4\sqrt{3}+4=7-4\sqrt{3}\)