Lấy O tùy ý trong tam giác ABC. Tia AO, BO, CO cắt BC, CA, AB tại D,E,F. cm:
OA/AD+OB/BE+OC/CF=2
cho tam giác abc o là điểm nằm trong tam giác, các tia AO,BO,CO cắt cạnh BC,CA,AB lần lượt tai D,E,F cmr OA/AD + OB/BE+OC/CF=2
Cho tam giác ABC.Điểm O nằm trong tam giác .Tia AO,BO,CO lần lượt cắt BC,CA,AB tại D;E;F.CMR: a:\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=2\)
cho tam giác nhọn abc o thuộc tam giác có OA,OB,OC cắt BC, CA, AB tại D,E,F. CMR AO/AD+OB/BE+OC/CF=2
Tam giác ABC có O thuộc miền trong tam giác. Gọi AO,BO,CO cắt BC,CA,AB lần lượt tại K,E,F.
Chứng minh: \(\dfrac{OA}{AK}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=2\)
Cho tam giác ABC ,O là điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại D,E,F. Chứng minh rằng:
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{BF}=2\)
Cho tam giác ABC. O là điểm nằm trong tam giác. AO, BO, CO cắt BC, AC, BA tại D, E, F.
Chứng minh rằng: \(\frac{AO}{AD}+\frac{BO}{BE}+\frac{CO}{CF}=2\)
Lấy 1 điểm O trong tam giác ABC. Các tia AO, BO, CO cắt BC, AC, AB lần lượt tại P, Q, R. CM OA/AP + OB/BQ + OC/CR =2
Lấy 1 điểm O trong tam giác ABC. Các tia AO, BO, CO cắt BC, AC, AB lần lượt tại P, Q, R. CM OA/AP + OB/BQ + OC/CR =2