Lấy 1 điểm O trong tam giác ABC. Các tia AO, BO, CO cắt BC, AC, AB lần lượt tại P, Q, R. CM OA/AP + OB/BQ + OC/CR =2
Lấy 1 điểm O trong tam giác ABC. Các tia AO, BO, CO cắt BC, AC, AB lần lượt tại P, Q, R. CM OA/AP + OB/BQ + OC/CR =2
lấy 1 điểm O trong tam giác ABC . các tia AO,BO,CO cắt BC,AC,AB lần lượt tại P,Q,R
c/m:OA/AP+OB/BQ+OC/CR=2
GIÚP TUI VỚI MỌI NGƯỜ ƠI,TUI CẢM ƠN NHIỀU
Cho tam giác ABC ,O là điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại D,E,F. Chứng minh rằng:
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{BF}=2\)
cho điểm O thuộc miền tam giác ABC. các tia OA,OB,OC cắt các cạnh của tam giác ABC lần lượt tại A',B',C'. chứng minh rằng
a) \(\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=1\)
B1 : Cho tam giác ABC, lấy điểm O bất kì trong tam giác đó. Vẽ các tia AO,BO,CO cắt BC,AC,AB lần lượt tại P,Q và R
CM: \(\frac{OA}{AP}+\frac{OB}{BQ}+\frac{OC}{CR}=2\)
B2: Cho tam giác ABC, vẽ trung tuyến AM. Điểm I bất kì trên AM, F là giao điểm của BI và AC. E là giao điểm của CI và AB. Từ M kẻ đường thẳng song song với IC cắt AB tại H và kẻ đường thẳng song song với IB cắt AC tại K
CM a, EF\(//\)HK
b, EF\(//\)BC
Các bạn giúp mk nha (Có hình càng tốt)
cho tam giác ABC và O là một điểm bất kỳ trong tam giác. các tia AO,BO,CO cắt các cạnh BC,CA,AB thứ tự tại các điểm P,Q,R. chứng minh OA/OP*OB/OQ*OC/OR>=8
Cho điểm O nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh của tam giác ABC lần lượt tại A', B', C'.
a) Chứng minh: \(\frac{OA'}{AA'} + \frac{OB'}{BB'} + \frac{OC'}{CC'} = 1.\)
b) Cho M=\(\frac{OA}{OA'} + \frac{OB}{OB'} + \frac{OC}{OC'}\) . Tìm GTNN của M
TOÁN 8 cho điểm O nằm trong tam giác ABC sao cho tiaAO,OB,OC cắt BC,AC,AB lần lượt tại D,E,F .
CHỨNG MINH: a) \(\frac{OA}{OD}+\frac{OB}{OE}+\frac{OC}{ÒF}\ge6\)
b) \(\frac{OA}{OD}.\frac{OB}{OE}+\frac{OC}{OF}\ge8\)