cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R . Kẻ đường cao AD (D thuộc BC) và đường kính AK . Hạ BE và CF cùng vuông góc với AK ( E thuộc AK , F thuộc AK ).
1) chứng minh tứ giác ABDE nội tiếp.
2) Chứng minh DF song song với BK
3) cho góc ABC = 60 độ , R=4cm. Tính diện tích hình quạt giới hạn bởi OC , OK và cung nhỏ CK .
4) cho BC cố định , A chuyển động trên cung lớn Bc sao cho tam giác ABC có ba góc nhọn . Chứng minh tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
B1:Cho hình chữ nhật ABCD. AB>AD. E thuộc CD sao cho AE=AB. F thuộc AD sao cho EF vuông góc Ea. Chứng minh : AC vuông góc BF.
B2:Cho tam giác ABC vuông tại A, đường cao AH. AB>AC.D nằm trong tam giác sao cho CD=CA. M thuộc BA sao cho góc BAM bằng 2 lần góc ACD. MD cắt AH tại N.C/m: BD^2 = BM.BA và DM=DN.
B3:Cho tam giác ABC vuông tại A, đường cao AH.O là trung điểm của AC. Kẻ AK vuông góc BO. Qua C kẻ song song với AB, cắt AK tại L.
a) CM:LH=LC.
b)Đường trung trực của BK cắt CL tại D. Chứng minh : DK=DC.
Cho tam giác ABC nhọn. đường tròn tâm O đường kính BC cắt AB, AC lần lượt ở E và D.
a) Chứng minh rằng: Tam giác BEC và BDC là các tam giác vuông.
b) Chứng minh: AD.AC = AE.AB
c) Trên BD và CE lần lượt lấy I, K sao cho góc AIC và góc AKB bằng nhau và bằng 90độ . Chứng minh AI = AK
Cho tam giác ABC cân tại A có AB=2a và góc BAC < 70°. Đặt góc BAC= 2α. Kẻ đường cao AH của tam giác ABC; kẻ HK⊥AC tại K. Lấy D ∈AK sao cho HD là phân giác góc AHK. Lấy I ∈Kc sao cho góc HIK >2α. Chứng minh rằng: AH2> HI(HI+IA)
Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm.
a) Tam giác ABC là tam giác gì?
b) AK vuông góc với BC tại K. Tính góc B, góc C, AK,BK,CK
c) Kẻ KE , KF vuông góc lần lượt với AB, AC. Chứng minh AK = EF và tam giác AEF đồng dạng với tam giác ACB
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH= 4cm, CH= 9cm. a) Tính AH, AB, AC ? b) Gọi M là trung điểm của AC. Tính góc BMC? (số đo làm tròn đến độ) c) Kẻ AK vuông góc BM tại M. Chứng minh góc ACB = góc BKH
giúp mình với ạ
Cho tam giác ABC vuông tại A, có góc C = 30 độ, BC = 18cm, đường cao AH
a, Tính AB, CA, góc B
b, Chứng minh cosC. cosB = HC/BC
c, Kẻ AK, AE lần lượt vuông góc với các tia phân giác góc trong và góc ngoài của góc B. Chứng minh KE//BC
d, Tính AK và diện tích AKBE
Cho tam giác ABC có ba góc nhọn, đường cao BK và CL cắt nhau tại H. Trên đọan HB lấy điểm E sao cho góc AEC =90°. Trên đọan HC lấy điểm F sao cho góc AFB =90°. Chứng minh rằng:
a) AK. AC=AL. AB
b) tam giác AEF cân
Cho tam giác ABC vuông tại A, có góc C = 30 độ, BC = 18cm, đường cao AH
a, Tính AB, CA, góc B
b, Chứng minh cosC. cosB = HC/BC
c, Kẻ AK, AE lần lượt vuông góc với các tia phân giác góc trong và góc ngoài của góc B. Chứng minh KE//BC
d, Tính AK và diện tích AKBE