Chọn B
lim x → − ∞ x 2 + 2 x + 3 x 4 x 2 + 1 − x + 2 = lim x → − ∞ − x 1 + 2 x + 3. x − x 4 + 1 − x + x . 2 x = − 1 + 3 − 2 − 1 = − 2 3
Chọn B
lim x → − ∞ x 2 + 2 x + 3 x 4 x 2 + 1 − x + 2 = lim x → − ∞ − x 1 + 2 x + 3. x − x 4 + 1 − x + x . 2 x = − 1 + 3 − 2 − 1 = − 2 3
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
giải phương trình
a) \(5^x=4\)
b) \(5^{2-x}=8\)
c) \(\left(\dfrac{1}{3}\right)^{4+x}=243\)
d) \(\left(\dfrac{2}{3}\right)^x=\dfrac{3}{2}\)
Cho f(x)=1/3(m-1)x³-mx²+(m+2)x-5. Tìm m để a)f'(x) lớn hơn hoặc bằng 0 với mọi x b)f'(x) nhỏ hơn hoặc bằng 0 với mọi x c)f'(x)=0 có 2 nghiệm cùng âm d)f'(x)=0 có nghiệm thỏa mãn x1+2x2=1
tìm khoảng đồng biến nghịch biến
a) \(y=\left(x^2-1\right)^2\)
b) \(y=\left(3x+4\right)^3\)
c) \(y=\left(x+3\right)^2\left(x-1\right)\)
d) \(y=\left(2x+2\right)\left(x^3-1\right)\)
xác định đường tiệm cận đứng của đồ thị hàm số sau
a) \(y=\dfrac{x+3}{x^2-9}\)
b) \(y=\dfrac{x-5}{x^2-25}\)
c) \(y=\dfrac{x^2-4x+3}{x^2-1}\)
d) \(y=\dfrac{x^2-3x-4}{x^2-2x-3}\)
giải các phương trình sau
a) \(2^{x^2-1}=256\)
b) \(3^{x^2+3x}=81\)
c) \(2^{x^2-5x}=64\)
d) \(\left(\dfrac{1}{3}\right)^x=243\)
e) \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)
tìm khoảng đồng biến nghịch biến
a) \(y=\left(5x-10\right)^4\)
b) \(y=\left(-x-1\right)\left(x+2\right)^4\)
c) \(y=\left(x^3-1\right)^3\)
d) \(y=\left(x^2-1\right)\left(x+2\right)\)
a) lim\(\dfrac{x^2-1}{x+1}\)(x-->-3)
b) lim\(\dfrac{4-x^2}{x+2}\)(x-->-2)
Tìm giới hạn hàm số
a) \(\text{ }lim_{x->3\frac{\sqrt{2x^2-2x-3}-\sqrt{x^2+2x-6}}{x^2-4x+3}}\)
b)\(lim_{x->1\frac{x^3-x^2+2x-2}{x-1}}\)
c)\(lim_{x->1\frac{x^3-x^2+2x-2}{\sqrt{x}-1}}\)
d)\(lim_{x->2\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}}\)