Kí hiệu z 1 , z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0
Giá trị của biểu thức P= z 1 2 + z 2 2 + z 1 z 2 bằng:
A. P=2
B. P=-1
C. P=0
D. P=1
Kí hiệu z 1 , z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 Giá trị của biểu thức P = z 1 2 + z 2 2 + z 1 . z 2 bằng:
A. P = 2
B. P = -1
C. P = 0
D. P = 1
Kí hiệu z1, z2 là hai nghiệm phức của phương trình z 2 + z + 2 = 0 Tính z 1 z 2 + z 2 z 1
Kí hiệu là hai nghiệm phức của phương trình 3 z 2 - z + 1 = 0 .Tính P = z 1 + z 2
A . P = 14 3
B . P = 2 3
C . P = 3 3
D . P = 2 3 3
Kí hiệu z 1 , z 2 là hai nghiệm phức của phương trình 3 z 2 - z + 1 = 0. Tính P = | z 1 |+| z 2 |
A. P = 3 3
B. P = A. P = 3 3
C. P = 2 3
D. P = 14 3
Trong tập các số phức gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 với z 2 có phần ảo dương. Cho số phức z thỏa mãn |z- z 1 | = 1 Giá trị nhỏ nhất của P = |z- z 2 | là
A . 2016 - 1
B . 2017 - 1
C . 2017 - 1 2
D . 2016 - 1 2
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 . Giá trị nhỏ nhất của P = z - z 2 là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 Giá trị nhỏ nhất của P = z - z 2 là
Kí hiệu n là số các giá trị của tham số a sao cho phương trình z 2 + a z + 3 = 0 ( với ẩn là z ), có hai nghiệm phức z 1 ; z 2 thỏa mãn z 1 2 + z 2 2 = - 5 . Tìm n.
A. n = 0
B. n = 1
C. n = 2
D. n = 3
Kí hiệu z 1 , z 2 , z 3 là ba nghiệm của phương trình phức z 3 + 2 z 2 + z - 4 = 0 . Tính giá trị của biểu thức T = z 1 + z 2 + z 3 .