Ta có y = x - 3 = x - 3 k h i x ≥ 3 - x + 3 k h i x < 3 .
Trên khoảng 3 ; + ∞ thì y = x – 3 có hệ số a= 1 >0 nên hàm số đồng biến trên khoảng này.
Trên khoảng - ∞ ; 3 thì y = - x + 3 có hệ số a= -1 < 0 nên hàm số nghịch biến trên khoảng này.
Ta có y = x - 3 = x - 3 k h i x ≥ 3 - x + 3 k h i x < 3 .
Trên khoảng 3 ; + ∞ thì y = x – 3 có hệ số a= 1 >0 nên hàm số đồng biến trên khoảng này.
Trên khoảng - ∞ ; 3 thì y = - x + 3 có hệ số a= -1 < 0 nên hàm số nghịch biến trên khoảng này.
Xét sự biến thiên của hàm số f(x)=x+1x1x trên khoảng (1; dương vô cực). Khẳng định nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; dương vô cực)
B. Hàm số nghịch biến trên khoảng (1; dương vô cực)
C. Hàm số đồng biến trên khoảng (-1;1)
D. Hàm số nghịch biến trên khoảng (âm vô cực; 1)
Mọi người giải ra giúp mình với ạ
Xét tính đồng biến, nghịch biến của hàm số f(x) = x − 3x + 5 trên khoảng (− ∞ ; −5) và trên khoảng (−5; + ∞ ). Khẳng định nào sau đây đúng?
A. Hàm số nghịch biến trên (− ∞ ; −5), đồng biến trên (−5; + ∞ ).
B. Hàm số đồng biến trên (− ∞ ; −5), nghịch biến trên (−5; + ∞ ).
C. Hàm số nghịch biến trên các khoảng (− ∞ ; −5) và (−5; + ∞ ).
D. Hàm số đồng biến trên các khoảng (− ∞ ; −5) và (−5; + ∞ )
Xét tính đồng biến, nghịch biến của hàm số f(x) = x 2 − 4 x + 5 trên khoảng (− ∞ ; 2) và trên khoảng (2; + ∞ ). Khẳng định nào sau đây đúng?
A. Hàm số nghịch biến trên (− ∞ ; 2), đồng biến trên (2; + ∞ ).
B. Hàm số đồng biến trên (− ∞ ; 2), nghịch biến trên (2; + ∞ ).
C. Hàm số nghịch biến trên các khoảng (− ∞ ; 2) và (2; + ∞ ).
D. Hàm số đồng biến trên các khoảng (− ∞ ; 2) và (2; + ∞ ).
cho hàm số y=f(x)=-x^2-2x+1. Mệnh đề nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-1;+vô cực) B. Hàm số nghịch biến trên khoảng (-vô cực;-1) C. Hàm số đồng biến trên khoảng (-1;+vô cực) D. Hàm số đồng biến trên khoảng (-vô cực;0)
Cho hàm số f(x) = 4-3x. Khẳng định nào sau đây đúng:
A. Hàm số nghịch biến trên \(\left(\frac{4}{3};+\infty\right)\) B. Hàm số đồng biến trên \(ℝ\)
C. Hàm số đồng biến trên \(\left(\frac{3}{4};+\infty\right)\) C. Hàm số đồng biến trên \(\left(-\infty;\frac{4}{3}\right)\)
Câu 1: Cho hàm số y=x-1 Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị cắt: trục hoành tại A ( 1;0 ) , trục tung tại B (0; -1) .
B.Hàm số đồng biến trên R .
C. Đồ thị không qua gốc tọa độ.
D.Hàm số nghịch biến trên R
Câu 48. Cho y=|x+1|+|x−2||x+1|+|x−2|và các mệnh đề
Câu 49. Hàm số y=-√|2x+3||2x+3| nghịch biến trên khoảng.
Câu 50. Hàm số y = 2 là hàm số gì.
A. Đồng biến B. Nghịch biến
C. không đồng biến cũng không nghịch biến D. Đáp án khác
Câu 56. Hàm số y= mx-\(\sqrt{2-m}\) đồng biến trên R khi và chỉ khi.
Câu 57. Cho hai đường thẳng d1 y=2x+3 d2 y=2x-3
. Khẳng định nào sau đây đúng:
A.d1 //d2
B. d1cắt d2
C. d1trùng d2
D. d1 vuông góc d2
Câu 48. Cho y=|x+1|+|x−2|và các mệnh đề
1)Hàm số tăng lên trên(-1,+∞)
2)Hàm số không đổi trên[−1;2)
3) Hàm số giảm trên(-∞,-1)
4) Hàm số giảm trên (-2,+∞)
Hỏi có bao nhiêu mệnh đề đúng?
A. 0 B. 1 C. 2 D. 3
Câu 49. Hàm số y=-√|2x+3|nghịch biến trên khoảng.
A.(\(-\dfrac{3}{2},+\infty\))
B.(-∞,\(-\dfrac{3}{2}\))
C. R
D.Cả 3 đáp án đều sai
Cho hàm số y=f(x) = 4x^2+ 6x-5 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×). b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]