Gọi thời gian chảy riêng đầy bể của vòi 1 và vòi 2 lần lượt là a(giờ) và b(giờ)
(Điều kiện: a>0 và b>0)
Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{a}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{15}\left(bể\right)\)
Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{15}\left(1\right)\)
Trong 3 giờ, vòi 1 chảy được \(\dfrac{3}{a}\left(bể\right)\)
Trong 5 giờ, vòi 2 chảy được \(\dfrac{5}{b}\left(bể\right)\)
Nếu vòi 1 chảy trong 3 giờ và vòi 2 chảy trong 5 giờ thì được 1/4 bể nên ta có: \(\dfrac{3}{a}+\dfrac{5}{b}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{15}\\\dfrac{3}{a}+\dfrac{5}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{3}{b}=\dfrac{1}{5}\\\dfrac{3}{a}+\dfrac{5}{b}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{2}{b}=\dfrac{1}{5}-\dfrac{1}{4}=\dfrac{-1}{20}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{15}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=40\\\dfrac{1}{a}=\dfrac{1}{15}-\dfrac{1}{b}=\dfrac{1}{15}-\dfrac{1}{40}=\dfrac{1}{24}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=24\\b=40\end{matrix}\right.\left(nhận\right)\)
Vậy: Vòi 1 cần chảy trong 24 giờ để đầy bể
Vòi 2 cần chảy trong 40 giờ để đầy bể