Gọi x(giờ) và y(giờ) lần lượt là thời gian hai máy bơm một mình đầy bể(Điều kiện: x>12; y>12)
Trong 1 giờ, máy 1 bơm được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, máy 2 bơm được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai máy bơm được: \(\dfrac{1}{12}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì nếu máy 1 bơm trong 3 giờ và máy 2 bơm trong 18 giờ thì đầy bể nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{18}{y}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{3}{x}+\dfrac{18}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{18}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-15}{y}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=20\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{20}=\dfrac{1}{30}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=20\end{matrix}\right.\)(thỏa ĐK)
Vậy: Máy 1 cần 30 giờ để bơm một mình đầy bể
Máy 2 cần 20 giờ để bơm một mình đầy bể