Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)
Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc
Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:
\(x-y=10\) (1)
Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:
\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)
Thế pt trên xuống pt dưới:
\(12\left(x+x-10\right)=x\left(x-10\right)\)
\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y=x-10=20\)
Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày
Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)
(Điều kiện: x>10)
Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)
Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)
Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)
Do đó, ta có phương trình:
\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)
=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)
=>\(x\left(x-10\right)=12\left(2x-10\right)\)
=>\(x^2-10x=24x-120\)
=>\(x^2-34x+120=0\)
=>(x-30)(x-4)=0
=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày
Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày