\(A=-x^2-2x+5-y^2+4y\)
\(=-x^2-2x-1-y^2+4y-4+10\)
\(=-\left(x^2+2x+1\right)-\left(y^2-4y+4\right)+10\)
\(=-\left(x+1\right)^2-\left(y-2\right)^2+10\ge10\)
Xảy ra khi \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
\(B=-4x^2-y^2+20x+2y-30\)
\(=-4x^2+20x-25-y^2+2y-1-4\)
\(=-4\left(x^2-5x+\frac{25}{4}\right)-\left(y^2-2y+1\right)-4\)
\(=-4\left(x-\frac{5}{2}\right)^2-\left(y-1\right)^2-4\le-4\)
\(=-4\left(x-\frac{5}{2}\right)^2-\left(y-1\right)^2-4\le-4\)
Xảy ra khi \(x=\frac{5}{2};y=1\)
mình nghĩ bạn chép sai đề bài rồi hay sao ấy, đề bài đúng của mình là gtln cơ .
A=-(x2+2x+1)-(y2-4y+4)+1+4+5
=-(x+1)2-(y-2)2+10
vì (x+1)2lớn hơn hoặc bằng 0 và (y-2)2 cũng lớn hơn hoặc bằng 0
=>-(x+1)2nhỏ hơn hoặc bằng 0 và -(y-2)2 cũng vậy=>-(x+1)2-(y-2)2 sẽ nhỏ hơn hoặc bằng 0=>-(x+1)2-(y-2)2+10 sẽ nhỏ hơn hoặc bằng 10. vậy gtln của A=10
dấu bằng xảy ra khi đồng thời x+1=0=>x=-1 và y-2=0=>y=2
B=-((2x)2+20x+25)-(y2-2y+1)+25+1-30
=-(2x+5)2-(y-1)2-4
bạn lập luận tương tự như ý a sẽ được -(2x+5)2-(y-1)2-4 sẽ nhỏ hơn hoặc bằng-4 dấu bằng xảy ra khi:2x+5=0=>x=-5/2 và y-1=0=>y=1