\(\{\begin{matrix} x+y+2z=4 \\ 2x-y+3z=6 \\ x-3y+4z=7 \end{matrix}\)
giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-3x=4-y\\y^3-3y=6-2z\\z^3-3z=8-3x\end{matrix}\right.\)
Tìm x,y,z thỏa mãn hệ sau:
\(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=2\\2x-y+2z=7\\x+2y+3z=5\end{matrix}\right.\)
Đoán nhận hệ số nghiệm của mỗi hệ phương trình sau và giải thích vì sao:
a) \(\left\{{}\begin{matrix}2x+y=3\\3x-y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x+2y=0\\2x-3y=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+0y=6\\2x+y=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-y=4\\0x-y=2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x+2y=3\\2x+4y=1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x+y=1\\\dfrac{x}{2}+\dfrac{y}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Mẫu câu a : Ta có: \(\dfrac{a}{a'}\ne\dfrac{b}{b'}\Leftrightarrow\dfrac{2}{3}\ne\dfrac{1}{-1}\), do đó hệ phương trình đã cho có 1 nghiệm duy nhất
giúp mk vs mn ơi! mk đang cần gấp
\(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)
..
\(\left\{{}\begin{matrix}2x+5y=8\\2x-3y=0\end{matrix}\right.\)
..
\(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
Giải hệ\(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
Nghiệm nguyên của pt : 4x-3y=-1 thỏa mãn -16<x+y<-2 là (xo;yo) khi đó xo.yo=?