Gọi S là tập hợp tất cả các số thực a sao cho phương trình z 2 + a - 2 z + 2 z - 3 = 0 có hai nghiệm phức z 1 , z 2 và các điểm biểu diễn của z1, z2 cùng với gốc toạ độ O tạo thành một tam giác đều. Tổng các phần tử của S bằng
A. 12.
B. 11,5
C. 13,5
D. 10.
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bẳng -2
b) Phần ảo của z bẳng 3
c) Phần thực của z thuộc khoảng (-1;2)
d) Phần ảo của z thuộc đoạn [1;3]
e) Phần thực và phần ảo đều thuộc đoạn [-2; 2]
Cho số phức z thỏa mãn ( z + 3 - i ) ( z ¯ + 1 + 3 i ) là một số thực. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường thẳng. Khoảng cách từ gốc tọa độ đến đường thẳng đó bằng
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+y²+ (z+2)²=4 và đường thẳng d : x = 2 - y y = t z = m - 1 + t . Gọi T là tập tất cả các giá trị của m để d cắt (S) tại hai điểm phân biệt A, B sao cho các tiếp diện của (S) tại A và B tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp T.
A. 3
B. -3
C. -5.
D. -4.
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bằng phần ảo của nó ;
b) Phần thực của z là số đối của phần ảo của nó ;
c) Phần ảo của z bằng hai lần phần thực của nó cộng với 1;
d) Modun của z bằng 1, phần thực của z không âm.
Gọi điểm A,B lần lượt biểu diễn các số phức z và z ' = 1 + i 2 z ; (z khác 0) trên mặt phẳng tọa độ (A,B,C và A',B',C' đều không thẳng hàng). Với O là gốc tọa độ, khẳng định nào sau đây đúng?
A. Tam giác OAB đều
B. Tam giác OAB vuông cân tại O
C. Tam giác OAB vuông cân tại B
D. Tam giác OAB vuông cân tại A
Cho a là số thực, phương trình z 2 + ( a + 2 ) z + 2 a - 3 có 2 nghiệm z 1 , z 2 . Gọi M, N là điểm biểu diễn của z 1 , z 2 trên mặt phẳng tọa độ. Biết tam giác OMN có một góc bằng 120 ° , tính tổng các giá trị của a.
Cho số phức z=1+i. Gọi S là tập hợp tất cả các điểm biểu diễn số phức w=a+bz+cz2 với a,b,c là các tham số thực thuộc đoạn [0;1]. Tính diện tích hình S?