Cho số phức z thỏa mãn là một số thực. Biết rằng tập hợp các điểm biểu diễn của z là một đường thẳng. Khoảng cách từ gốc tọa độ đến đường thẳng đó bằng
A. .
B. .
C..
D. .
Cho các số phức z thỏa mãn z + 1 - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3=0
B. 4x-6y-3=0
C. 4x+6y+3=0
D. 4x-6y+3=0
Cho số phức z thay đổi hoàn toàn thỏa mãn: |z-i| = |z-1+2i|. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (2-i)z+1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. -x + 7y + 9 = 0
B. x + 7y - 9 = 0
C. x + 7y + 9 = 0
D. x - 7y + 9 = 0
Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Tìm tọa độ tâm I của đường tròn đó?
A.I(3;-2)
B. I(-3;2)
C.I(3;2)
D.I(-3;-2)
Cho các số phức z thỏa mãn z − i = z − 1 + 2 i . Tập hợp các điểm biểu diễn số phức w = 2 − i z + 1 trên mặt phẳng tọa độ là một đường thẳng. Phương trình đường thẳng đó là
A. x − 7 y − 9 = 0
B. x + 7 y − 9 = 0
C. x + 7 y + 9 = 0
D. x - 7 y + 9 = 0
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Xét các số phức z thỏa mãn ( z + 2 i ) ( z ¯ + 2 ) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A.(1;-1)
B. (1;1)
C. (-1;1)
D. (-1;-1)